

Thomas Schulz

Linklaters LLP, Partner, Berlin, Germany

Offshore Wind Energy in Europe lessons learned, trends

Offshore Wind Energy in Europe – Where do we stand, where are we headed?

Offshore wind farms, capacity installed in Europe 2024

Offshore wind farm capacity in 2030 (official announcements)

Tender structure – in a post-subsidy world

The following primary structuring options are available, optionally in combination with additional criteria:

Tender structure – CfD/two-sided Feed-in Premiums

Contracts for Difference Euros per megawatt hour

■ Revenues from the electricity market ■ Positive or negative premium payment

Tender structure - examples of non-price/qualitative criteria

Qualitative Criteria in Germany (for certain sea areas, they account for 40% of the bid value)

- Conclusion of PPAs
- Securing skilled workers
- Environmental protection during foundation of the WTGs
- Decarbonisation in production of the WTGs

Qualitative Criteria in the Netherlands

(comparative assessment as one tender type)

- Technical expertise of the developer and subcontractors
- Developers' financial strength
- System integration solutions (including electrolysers, battery storage)
- Ecology and ESG (e.g. compliance with supply chain due diligence and use of circular materials)

Advantages/disadvantages of respective tender structuring options

Negative Bidding	Non-price Criteria	Contracts for Difference
High Comparability, very straightforward ✓	Limited Comparability	High Comparability ☑
High costs for developer, passed on to supply chain and consumers 区	Cost reduction ✓	Costs depending on the individual case ☑区
Encouraging bets on technological advancements and rising electricity prices 🗷	Qualitative criteria to be well selected (meaningful and allowing for differentiation)	Generally high reliability, but issue of sudden cost increases ☑ ☑
Likelihood of realisation decreases if bets not fulfilled 🗵	Likelihood of realisation not affected ✓	Likelihood of realisation decreases if no sufficient cost adjustment 🗹 🗷
Normal system integration ☑	High system integration ☑	Limited system integration

Tender structure – further issues across all tender variants

Limitation of sea areas/capacity that a bidder can be awarded per tender

Obligation for the bidder to provide security (ensuring project realisation)

Third-party litigation

Permit – key issues

Grid connection – structuring options and key issues

Construction by TSO (NL, FR, GER)	Construction by Project Developer (UK)
High security for project developer ☑	Connection with tenders allowing for further differentiation of the award ✓
Typically, compensation for delayed or interrupted grid connection ☑	Project developer bears the risk of grid connection delays/interruptions itself ✓ 🗷
Cost borne by the general public, financed through a levy on consumers or state budget ☑ 区	Possibility of cost reduction from the perspective of the general public ☑
	Compliance with EU unbundling rules necessary (electricity generation ⇔ grid operation) ▶
Û	Û

Significant investment and time required to expand the inland grid

Rising risk of inland grid congestion and redispatch measures

